

Android and the 3in1 Tool system: Layers of security
Chiral Software, Inc.
Prepared by: Eric Hollander
June 20th, 2010
Introduction
The Android platform has been selected as the basis for the 3in1 Tool. The 3in1 Tool is a mobile accounting system. The purpose of the 3in1 Tool is to allow in-the-field recording of accounting data by Field Ordering Officers. Today these data are recorded on paper, using an SF-44 form, and delivered to various offices for clearance and filing. The 3in1 Tool will enhance FOO safety by reducing the need to travel to deliver these documents. The 3in1 Tool will also save the government money by increasing visibility into purchases.
Android is new to the Department of Defense. This document reviews the security-related aspects of the Android platform, and of the 3in1 Tool, to demonstrate the suitability of Android for DoD use. The Android platform is designed for strong security, and the 3in1 Tool application is designed to use the Android system at the highest possible level of security.
Our security theme is use of layers. Each layer is strong by itself, but failure of any one layer does not allow compromise of the system.
Android: layers of proven components
[image:]The Android platform consists of a Linux kernel, as the operating system layer, and a Java Virtual Machine (JVM) as the application layer. Both of these are long-established technologies with excellent security records. Both are open source and have been subjected to many years of scrutiny by security researchers. Android builds on these and makes further refinements to add even more security. The layers start with the Linux kernel's hardware-enforced process isolation, to capabilities-based permissions, signed executables, and a virtual machine execution environment.
Android's Linux execution layer – hardware-enforced user-per-process isolation
Linux has had strong security features from the beginning. All processes run with a user ID, and user processes cannot access the memory of a process running as another user. Further, user processes are locked out from system resources, such as raw disk access, raw memory access, or any other dangerous operations. The Linux security model is designed to prevent a hostile user from being able to break out of his user restrictions or escalate privileges. Users are isolated, and isolation is enforced at the hardware level by the CPU.
Android builds further security enhancements into Linux. One of the key enhancements is a user-per-process model. In this model, each process runs as a separate user ID, meaning that each process is isolated at the hardware level. And no Android user process can access system files, ever.
Capabilities-based security
In most operating systems, a program does not need to declare its capabilities before it is installed. If a program needs to access a file, or the network, it attempts to do it. On Windows systems today, an anti-virus program may attempt to intercept the access request and give the user the option of allowing or blocking it.
The ability to control application capabilities is built-in to Android. All Android applications must list the capabilities they need to use in their application file, and the JVM blocks any operation which is not permitted.
Cryptographically signed executables
Another level of security is the requirement for cryptographically-signed executables. Android applications exist as APK files. Each APK must be signed, and Android verifies the signature against a set of acceptable Certificate Authorities (CAs) before installing. Unsigned applications can't even install. This goes beyond the standard security of Windows and Linux systems, which do allow the user to install unsigned applications.
The Java Virtual Machine
[image:]All Android applications are written in Java, which is then compiled into the executable file. The executable file is run within Android's Dalvik JVM. Android's Java platform brings with it all the security advantages that are inherent in Java itself. Java was designed, from the beginning, to be able to safely run hostile code by never running code directly on the underlying hardware.
The fundamental advantage of the JVM is that it creates a layer between the executing code and the underlying system. The executing code never has direct access to memory or other resources. Buffer overflows and other memory errors, which are the cause of most exploitable holes in other systems, are impossible in Java, because the executing code has no access to memory.
Security of the 3in1 Tool
 (
Illustration
1
: BIP-6000
)[image:]We do not use an ordinary consumer Android device. Our device is the BIP-6000, running a highly customized version of the Android system. The major changes to our Android system are that many features and capabilities, which consumers would expect, have been removed, and the device is locked down.
The 3in1 Tool application has layers of security, including changes to the operating system, encryption in the application, and a hardware security co-processor.
3in1 Tool's system lock-down – kiosk mode
The system is locked in “kiosk mode” and can only run the 3in1 Tool. Users can never gain access to the Android desktop, settings menu, or any system applications. This prevents users from even downloading files or applications.[footnoteRef:1] [1: 	Even if the user could download an application, it would not run because it would lack the necessary signature.]

Removed features
Many features, which consumers would expect of a mobile device, have been removed. The removed features include:
· Web browser
· Settings menu
· File browser
· App store
· Contacts
· Dialer / messaging
Of course, even if this software were present, the user would have no way of accessing it, because the user can't leave the 3in1 Tool application. Removing unneeded applications is just another layer.
Giesecke & Devrient (G&D) Mobile Security Cards
 (
Illustration
2
: G&D Mobile Security Card
)[image:]The 3in1 Tool makes use of the G&D Mobile Security Card (MSC). G&D has been making physically-secure tokens (currency and stock certificates) since 1852, and is now a leading producer of cryptographic identity tokens and secure co-processors, for identification, financial security, and government applications.
The MSC is a FIPS 140-2 Level 3 certified device. This provides a level of physical and software security far beyond ordinary consumer use, and beyond the security of ordinary Windows PCs and mobile devices, which do not have physical tamper resistance. The MSC includes a JavaCard secure co-processor. This type of co-processor is also used in DoD Common Access Cards (CACs).
The 3in1 Tool stores all of its key material on the MSC. Private keys never leave the MSC. Secret keys only leave the MSC (going into application RAM) after verifying a strong password.
Strong encryption everywhere
This is a mobile system, meaning it is possible it could fall into enemy hands. Data must remain secure even if a hostile party has unrestricted physical access to the device.
To this end, all data files stored on the system are encrypted using AES-256 with cryptographically-strong keys. The device also maintains an RSA 2048 bit private key in the MSC.
Data are always transmitted with strong encryption. All communications are secured with SSL. The DoD root certificates are pre-loaded on the device.
Conclusion
While Android is new, and new to the DoD, it is based on long-established components with excellent security histories. Android's security is built in layers, so the system's security is maintained even if one layer fails.
The Android platform used for the 3in1 Tool is not a standard consumer Android platform. It runs on a BIP-6000 rugged handset. It runs in a “kiosk mode” so that the user can never exit the 3in1 Tool. Many Android features have been removed as well.
The 3in1 Tool application itself uses encryption, a FIPS 140-2 Level 3 security co-processor, and other secure design elements as layers of security.

Department of Defense	Page 3 / 3 	CONTROLLED UNCLASSIFIED INFORMATION
image4.png

image1.emf

image2.emf

image3.png

